

Solid State Broadband High Power Amplifier

2209

150 – 450 MHz / 2000 Watts

The 2209 is suitable for octave bandwidth high power CW, modulated, and pulse applications. This amplifier utilizes high power LDMOS devices that provide wide frequency response, high gain, high peak power capability, and low distortions. Exceptional performance, long-term reliability and high efficiency are achieved by employing advanced broadband RF matching networks and combining techniques, EMI/RFI filters, and all qualified components. The amplifier is constructed within a 3RU controller drawer, a 5RU booster drawer and a 3RU combiner/coupler drawer including the forced air-cooling. Standard operating voltage is threephase 208 VAC line-to-line.

The amplifier includes a built-in control and monitoring system, with protection functions which preserve high availability. Remote management and diagnostics are via an embedded web server allowing network managed site status and control simply by connecting the unit's Ethernet port to a LAN. Using a web browser and the unit's IP address (IPV4) allows ease of access with the benefit of multi-level security. The control system core supports hardware runs an embedded OS (Linux), has a built-in non-volatile memory for event recording, and factory setup recovery features. The extended memory option allows storage of control parameters and event logs.

Empower RF's ISO9001: 2015 Quality Assurance Program assures consistent performance and the highest reliability.

- Solid-state linear compact and modular design
- Suitable for CW, AM, FM and pulse (Consult factory for other modulation types)
- Embedded directional coupler Eliminates the need for external component
- 50 ohm input/output impedance
- . Built-in Control, Monitoring and Protection functions
- . High reliability and ruggedness

ELECTRICAL SPECIFICATIONS over temperature conditions (-10 to +50°C)

Parameter	Symbol	Min	Тур	Max	Unit
Operating Frequency	BW	150		450	MHz
Power Output CW Note 1	Psat	2000			Watt
Power Output @ 1dB Gain Compression Note 2	P _{1dB}	1600			Watt
Power Gain @ 1dB Gain Compression	G _{1dB}	63			dB
Input Power for Rated P _{SAT}	PIN		0		dBm
Gain Flatness / Leveled ALC	ΔG			±3/±0.7	dB
Gain Adjustment Range	VVA	20			dB
Input Return Loss	S ₁₁			-10	dB
Noise Figure @ maximum gain	NF		20		dB
Third Order Intermodulation Distortion 2-Tone @ 57dBm/Tone, 1MHz Spacing	IM3		-30	-20	dBc
Hermonics $\otimes \mathbf{P}_{m-} = 1600W$	2 ND			-20	dBc
Harmonics @ P _{OUT} = 1600W	3 RD			-15	
Spurious Signals	Spur			-60	dBc
Operating Voltage (3-ph, line-to-line)	VAC		208		Volt
Power Consumption @ 2000W CW	PD			9000	VA

2. P1dB measurement performed with AM 80% depth of modulation, 1 kHz modulation signal.

MECHANICAL SPECIFICATIONS

Parameter	Value	Unit	
Dimensions W x H x D	19 x 19.25 x 22	Inch	
(3RU + 5RU + 3RU)	(overall dimension)	INCH	
Weight	160	Pound	
RF Connectors Input/Output	Input: N-type, Female	RF IN	
	Output: 7/16-DIN, Female	RF OUT	
RF Sample Connectors	SMA, Female	Forward/Reverse	
Blanking/Gating Input Connector	BNC, Female	Blanking	
Cooling	Built-in forced air-cooling system – front to rear	Airflow direction	

Solid State Broadband High Power Amplifier

2209

150 - 450 MHz / 2000 Watts

ENVIRONMENTAL CHARACTERISTICS (Quali	fication Data	available for revie	ew):		
Parameter	Symbol	Min	Тур	Max	Unit
Operating Ambient Temperature *	TA	-10 *		+50	°C
Non-operating Temperature *	Tstg	-20 *		+85	°C
Relative Humidity (non-condensing)	RH			95	%
Shock / Vibration - MIL-STD-810F	SH / VI				
Shock Method 516.5, Vibration Method 514.5	3H / VI				

Note: [*] Consult Empower RF for application conditions below <u>-10°C / -20°C</u> temperatures (Operational / Non-operational).

PROTECTIONS:

Parameter	Specification	Unit
Input Overdrive	+10 dBm	Max
VSWR protection	At 3:1 or higher – PA backs-off output power to a safe operating level – no system shutdown, "On Air" time is maximized	
Thermal – Graceful Degradation	Ambient 50°C	Min
Default Data Recovery	Factory Default Calibration Recovery	

COMMUNICATION INTERFACES:

Function	Utility	Connector
Ethernet	Network management of device / web interface	RJ45
USB	Mass storage / Expansion Bus	USB 1.x/2.0 compatible
RS232, default [RS422, factory configurable]	Serial management of device / local operator access	D-Sub 9-position Male

Available Options

2209- <u>00X</u>	NOTIONAL BLOCK DIAGRAM
-001 208VAC, 3-ph, MIL-STD DC Connector, Rear RF Connectors	
Contact us for other available options	
Standard Features:	
-LCD Control, Ethernet & Serial Comm	FWD REV
-Main RF Connectors: Input & Output [N-type-F & 7/16-DIN-F]	
-RF Sample Ports: Forward & Reverse [SMA Female]	
-Blanking/Gating Port: BNC Female	Model 2209 150-450MHz, 2kW
-Rack Slides, Handles and Rackmount Bracket	

Solid State Broadband High Power Amplifier

2209

150 - 450 MHz / 2000 Watts

TYPICAL PERFORMANCE Plot 1 – Small Signal Gain @ PIN = -30dBm Plot 2 - Leveled ALC Flatness @ 2000 Watts Reference: 66dB, 2dB/div. Power Gain @ Constant = 0dBm Reference: 63dB, 1dB/div. 1 150.00000 MHz 62.744 dB 2 200.00000 MHz 63.144 dB 3 250.00000 MHz 63.144 dB 3 250.00000 MHz 63.147 dB 3 350.00000 MHz 63.147 dB 5 350.00000 MHz 63.121 dB 6 400.00000 MHz 63.221 dB 7 450.00000 MHz 62.922 dB 150.00000 MHz 69.122 dB 200.00000 MHz 70.096 dB 210.00000 MHz 69.797 dB 300.00000 MHz 69.679 dB 350.00000 MHz 67.830 dB 400.00000 MHz 67.296 dB 450.00000 MHz 67.688 dB 66.00 mean: 63.054 dB s.dev: 0.1229 dB p-p: 0.7256 dB mean: 69.056 db s.dev: 1.3443 db p-p: 5.5604 dB 65.O 64.0 68.0 63.0 66.00 64.0 62.0 60. 60.0 Exit Plot 3 – Gain Adjustment Range @ PIN = -30dBm Plot 4 – Small Signal Gain Input Return Loss Top Curve: Maximum Gain Reference: -10dB, 10dB/div. Bottom Curve: Minimum Gain Reference: 46dB, 10dB/div. 2 Response 3 Stimulus 4 Mir/Analysis 5 Instr State Mag 10.0008/ Ref 46.0008 [RT 0&M] >1 150.0000 MHz 33.699 dB 2 200.0000 MHz 34.649 dB 3 250.0000 MHz 33.669 dB 4 300.0000 MHz 33.748 dB 5 350.0000 MHz 32.759 dB 6 400.0000 MHz 32.79 dB 7 450.0000 MHz 31.849 dB 7 450.0000 MHz 31.567 dB 150.0000 MHz -23.649 dB 200.00000 MHz -16.004 dB 210.00000 MHz -12.240 dB 300.00000 MHz -11.031 dB 350.00000 MHz -11.031 dB 350.00000 MHz -14.882 dB 400.00000 MHz -14.882 dB 450.00000 MHz -14.882 dB 86.00 mean: 33,423 de s.dev: 1,3103 de p-p: 5,8505 de 66.00 10.0 Data Math 46.00 -10.00 Equation Edit Equation Edit Title Labe Edit Title Labe -30.0 Title Labe Title I -40.0 Graticule Labo Graticula Labo